Abstract

Accurate and expeditious segmentation of stroke lesions can greatly assist physicians in making accurate medical diagnoses and administering timely treatments. However, there are two limitations to the current deep learning methods. On the one hand, the attention structure utilizes only local features, which misleads the subsequent segmentation; on the other hand, simple downsampling compromises task-relevant detailed semantic information. To address these challenges, we propose a novel feature refinement and protection network (FRPNet) for stroke lesion segmentation. FRPNet employs a symmetric encoding-decoding structure and incorporates twin attention gate (TAG) and multi-dimension attention pooling (MAP) modules. The TAG module leverages the self-attention mechanism and bi-directional attention to extract both global and local features of the lesion. On the other hand, the MAP module establishes multidimensional pooling attention to effectively mitigate the loss of features during the encoding process. Extensive comparative experiments show that, our method significantly outperforms the state-of-the-art approaches with 60.16% DSC, 36.20px HD and 85.72% DSC, 27.02px HD on two ischemic stroke datasets that contain all stroke stages and several sequences of stroke images. The excellent results that exceed those of existing methods illustrate the efficacy and generalizability of the proposed method. The source code is released on https://github.com/wu2ze2lin2/FRPNet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call