Abstract

To improve the performance of nonlinear system modeling, this study proposes a feature clustering-based adaptive modular neural network (FC-AMNN) by simulating information processing mechanism of human brains in the way that different information is processed by different modules in parallel. Firstly, features are clustered using an adaptive feature clustering algorithm, and the number of modules in FC-AMNN is determined by the number of feature clusters automatically. The features in each cluster are then allocated to the corresponding module in FC-AMNN. Then, a self-constructive RBF neural network based on Error Correction algorithm is adopted as the subnetwork to study the allocated features. All modules work in parallel and are finally integrated using a Bayesian method to obtain the output. To demonstrate the effectiveness of the proposed model, FC-AMNN is tested on several UCI benchmark problems as well as a practical problem in wastewater treatment process. The experimental results show that the FC-AMNN can achieve a better generalization performance and an accurate result for nonlinear system modeling compared with other modular neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.