Abstract

In this paper, a feasible path-based branch and bound (B&B) algorithm is proposed to solve mixed-integer nonlinear programming problems with highly nonconvex nature through integration of the previously proposed hybrid feasible-path optimisation algorithm and the branch and bound method. The main advantage of this novel algorithm is that our previously proposed hybrid steady-state and time-relaxation-based optimisation algorithm is employed to solve a nonlinear programming (NLP) subproblem at each node during B&B. The solution from a parent node in B&B is used to initialize the NLP subproblems at the child nodes to improve computational efficiency. This approach allows circumventing complex initialisation procedure and overcoming difficulties in convergence of process simulation. The capability of the proposed algorithm is illustrated by several process synthesis and intensification problems using rigorous models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.