Abstract
The electroencephalography (EEG) is a widely used diagnostic tool for a number of clinical applications, such as diagnosis of epilepsy and study of sleep. Traditionally, to acquire a single channel of EEG signal, at least three electrodes must be installed on the skin separated at certain distances. They must also be connected to an amplifier by electrode leads. These basic requirements are acceptable in most clinical laboratories, but are unacceptable in certain point-of-care applications, such as during patient transportation. In order to remove these requirements, we are designing a single-unit EEG sensor in the size of a U.S. penny. It contains multiple closely spaced dry electrodes that can hook onto the skin, an electronic circuitry for signal amplification, digitization and wireless transmission, and a battery providing power. In this paper, we answer two key questions regarding the feasibility of the single-unit design: 1) can the closely-spaced electrodes obtain EEG signal reliably? and 2) will the electrodes orientated in certain ways improve signal quality? We conducted experiments utilizing closely spaced electrodes to record the alpha wave in the EEG. Our results have shown positive answers to the two feasibility questions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International conference on signal processing proceedings. International Conference on Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.