Abstract

PurposeThe current standard of care for muscle-invasive bladder cancer is neoadjuvant chemotherapy followed by radical cystectomy with lymph node dissection. Although this treatment provides therapeutic benefit, it is associated with notable morbidity. Bladder sparing techniques, such as concurrent chemo-radiation, are less invasive and prioritize organ preservation in individuals with invasive bladder cancer and offer comparable disease control. High-dose-rate brachytherapy is an emerging paradigm in the management of muscle-invasive bladder cancer. During high-dose-rate brachytherapy, radioactive sources are introduced to the area of the primary tumor through specialized catheters. The specific placement of brachytherapy catheters results in heightened effectiveness of the radiation treatment with less radiation damage to surrounding structures. For bladder-sparing therapies such as brachytherapy to rival radical cystectomy, these techniques need to be refined further by radiation oncologists. ProcedureOne such modality for developing and practicing these techniques is the use of cadaveric models in innovation-focused clinical training facilities, which provide a simulated sterile surgical environment without the concern for extending intraoperative time. Findings and conclusionsThe objective of this technical note is to demonstrate how clinical training facilities such as the Houston Methodist Institute for Technology, Innovation & Education are ideal for the development, testing, and training of novel brachytherapy techniques using cadaveric models. By utilizing a network of similarly innovative training centers, research and development of brachytherapy techniques can be expedited, and novel bladder-sparing treatment methods can be implemented as the standard of care for bladder cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call