Abstract

Single-photon emission computed tomography (SPECT) is a suitable tool for clinically localizing deep-sited tumors; SPECT with high spatial resolution has the ability to localize deep-sited tumors precisely. However, because of its poor sensitivity, in China SPECT now only plays a complementary role. To improve the sensitivity of the parallel beam collimator mainly used in China, a multiplexing parallel beam collimator is proposed, which can improve sensitivity while maintaining higher spatial resolution by using theoretical prediction and Monte Carlo simulation. The improved sensitivity-to-spatial resolution ratio has an optimal value. In addition, a set of gamma ray channels, introduced only in the transverse direction, did not have any effect in the axial direction. In the transverse direction, the projection data are the sum of the parallel beam and two oblique parallel beams. From visual assessment obtained using computer simulations with equal sensitivity, the reconstructed image at deep-sited was noticeably better than that with the high sensitivity parallelbeam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call