Abstract

Airway obstruction conditions are relatively rarely observed in clinical settings but nevertheless, extremely challenging to handle, especially when observed in pediatric patients. Several surgical procedures, including tracheal resection, end-to-end tracheal anastomosis, and tracheoplasty, have been developed and practised of late, to treat airway obstruction. However, the clinical outcome is typically not satisfactory due to airway restenosis conditions that develop following surgery. Various types of stents are currently available for airway stenting ranging from non-degradable silicone tubes and bio-inert metallic stents (bare or coated with polymer matrix) to hybrid silicone tubes strengthened by metallic cores, but none of the stents provides the satisfactory long-term effectiveness. Therefore, there is a significant clinical need for a biodegradable airway stent that would maintain airway patency and totally degrade over time after meeting the desired objectives. The present study aims to investigate biodegradable magnesium-aluminum-zinc-calcium-manganese (AZXM) alloy as a potential tracheal stent. The new AZXM alloy was fabricated by partially replacing aliminum in commercial AZ31 alloy with calcium. The present study demonstrates that calcium preferentially segregates along the grain boundaries as intermetallic phases (Mg2Ca) and is homogeneously distributed in the magnesium matrix. The extruded AZXM alloy showed less pitting, higher corrosion resistance in Hank's Balanced Salt Solution (HBSS) compared to the as-cast and solution-treated AZXM alloys and exhibited optimized mechanical properties. In vitro cytotoxicity evaluation using human trachea epithelial cells demonstrated excellent cyto-compatibility of AZXM alloys compared to pure Mg and commercial AZ31 validated by a very preliminary rabbit in vivo tracheal model study. Preliminary results show that the approach to use biodegradable AZXM alloys as a tracheal stent is indeed promising, although further alloy processing is required to improve the ductility needed followed by a more exhaustive in vivo study to demonstrate full viability for stent applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.