Abstract

Matrix reference materials are an essential component for the validation and quality control of analytical methodologies for the quantitation of marine biotoxins in shellfish. Given the potential advantages of reference materials in powder form, a study was conducted to assess the feasibility for the production of a freeze-dried oyster tissue reference material containing a range of important paralytic shellfish poisoning toxins. One bulk sample of a wet oyster tissue homogenate was generated following mass culturing of toxic Alexandrium and oyster feeding experiments. The bulk tissue was used to prepare untreated wet frozen aliquots with the remainder being freeze-dried and processed into appropriately-sized powder samples. A pre-column oxidation LC-FLD analysis was used to confirm the absence of any chromatographic artefacts resulting from the processing and to confirm acceptable homogeneity of the tissues. Excellent stability over both the short-term (1 month) and long-term (1 year) of the freeze-dried material was demonstrated as compared with the stability of the untreated wet tissue. A post-column oxidation LC-FLD method was used to confirm the absence of toxin epimerisation in freeze-dried tissues which were observed in the wet tissues. Overall the work showed the feasibility of an approach to produce a homogenous freeze-dried oyster matrix material with enhanced stability in comparison to the untreated wet tissue. The potential for use of the process for preparation of large scale production batches of a freeze-dried CRM for paralytic shellfish poisoning toxins has therefore been demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.