Abstract
A rapid method based on three-dimensional synchronous fluorescence spectroscopy was developed for emulsion oxidation evaluation. This method was selected because of its high sensitivity to dissolved organic matter typically occurring in the lipid oxidation. Spectral signal and chemical reference measurements were recorded for each emulsion sample as input and output data for the model construction. Characteristic values were extracted from the spectral data by the application of parallel factor (PARAFAC) analysis. Partial least squares regression (PLSR) was then used to construct a regression model for the rapid determination of emulsion oxidation. The correlation coefficient of the calibration and prediction sets were used as the performance parameters for the PLSR models as follows: R = 0.929, 0.973 for emulsion samples stored at 25℃; R = 0.897, 0.903 for emulsion samples stored at 70℃. The overall results demonstrated that the fluorescence spectroscopy, coupled with PARAFAC and PLSR algorithms, could be successfully used as a rapid method for the emulsion oxidation evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.