Abstract

Burgers’ equation on an unbounded domain is an important mathematical model to treat with some external problems of fluid materials. In this paper, we study a FDM of Burgers’ equation using high-order artificial boundary conditions on the unbounded domain. First, the original problem is converted into the heat equation on an unbounded domain by Hopf-Cole transformation. Thus the difficulty of nonlinearity of Burgers’ equation is overcome. Second, high-order artificial boundary conditions are given by using Padé approximation and Laplace transformation. And the conditions confine the heat equation onto a bounded computational domain. Third, we prove the solutions of the resulting heat equation and Burgers’ equation are both stable. Fourth, we establish the FDM for Burgers’ equation on the bounded computational domain. Finally, a numerical example demonstrates the stability, the effectiveness and the second-order convergence of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.