Abstract
Target search using a swarm of robots is a classic research topic that poses challenges, particularly in conducting multi-target searching in unknown environments. Key challenges include high communication cost among robots, unknown positions of obstacles, and the presence of multiple targets. To address these challenges, we propose a novel Robotic Flow Direction Algorithm (RFDA), building upon the modified Flow Direction Algorithm (FDA) to suit the characteristics of the robot’s motion. RFDA efficiently reduces the communication cost and navigates around unknown obstacles. The algorithm also accounts for scenarios involving isolated robots. The pipeline of the proposed RFDA method is outlined as follows: (1). Learning strategy: a neighborhood information based learning strategy is adopted to enhance the FDA’s position update formula. This allows swarm robots to systematically locate the target (the lowest height) in a stepwise manner. (2). Adaptive inertia weighting: An adaptive inertia weighting mechanism is employed to maintain diversity among robots during the search and avoid premature convergence. (3). Sink-filling process: The algorithm simulates the sink-filling process and moving to the aspect slope to escape from local optima. (4). Isolated robot scenario: The case of an isolated robot (a robot without neighbors) is considered. Global optimal information is only required when the robot is isolated or undergoing the sink-filling process, thereby reducing communication costs. We not only demonstrate the probabilistic completeness of RFDA but also validate its effectiveness by comparing it with six other competing algorithms in a simulated environment. Experiments cover various aspects such as target number, population size, and environment size. Our findings indicate that RFDA outperforms other methods in terms of the number of required iterations and the full success rate. The Friedman and Wilcoxon tests further demonstrate the superiority of RFDA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.