Abstract

Adaptation to partial failure is one of the most important requirements for space robotics, since space robots cannot be repaired after they have been launched. We propose a decentralized autonomous control algorithm for hyper-redundant manipulators that uses parallel processing with low-performance processors to achieve this adaptation. In this paper, a number of manipulator joints are locked at a certain angle in a computer simulation and the adaptability of the control algorithm to these failures is assessed. The control algorithm successfully continues its positioning task at a rate of more than 90%, even after half of its joints have failed. The control algorithm is also compared with behavior-based control architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.