Abstract

Activity classification has been an interesting area of research for many years, to better understand human behavior. Recent advancements in embedded computing systems allowed the emergence of several state-of-art solutions for human activity classification using sensors of a smartphone. The sensors generate temporal sequences of observations for human activity, which is called as Multivariate Time Series (MTS). Current state-of-art solutions for human activity classification suffer from two major limitations: first, the length of testing MTS should be equal to the training MTS and second, the MTS should not have any faulty time series. In real-time applications, it is desirable to classify a human activity using an incomplete MTS as early as possible. In this work, we propose a fault-tolerant early classification of MTS (FECM) approach to address these limitations. FECM builds a set of classification models using MTS training dataset. The approach employs Gaussian Process classifier to estimate minimum required length of time series, which is used to predict a class label of new MTS. Further, FECM uses an Auto Regressive Integrated Moving Average model to identify faulty time series in the new MTS. Finally, we conduct an experiment to evaluate the performance of FECM using accuracy and earliness metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.