Abstract

This paper presents a fault tolerance architecture for data fusion mechanisms that tolerates hardware faults in the sensors and software faults in the data fusion. After introducing the basic concepts of fault tolerance and data fusion, we present first the generic architecture before detailing an implementation using Kalman filters for mobile robot localization. Finally fault injection is used on real data from this implementation to validate our architecture. Under a single fault hypothesis, we detect hardware and software faults and recover from hardware faults. With more redundancies, it would be possible to consider multiple faults and recover from software ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.