Abstract

With the increasing scale of distribution networks and the mass access of distributed generation, traditional centralized fault location methods can no longer meet the performance requirements of speed and high accuracy. Therefore, this paper proposes a fault segment location method based on spiking neural P systems and Bayesian estimation for distribution networks with distributed generation. First, the distribution network system topology is decoupled into single-branch networks. A spiking neural P system with excitatory and inhibitory synapses is then proposed to model the suspected faulty segment, and its matrix reasoning algorithm is executed to obtain a preliminary set of location results. Finally, the Bayesian estimation and contradiction principle are applied to verify and correct the initial results to obtain the final location results. Simulation results based on the IEEE 33-node system validate the feasibility and effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call