Abstract
Fault localization has been determined as a major resource factor in the software development life cycle. Academic fault localization techniques are mostly unknown and unused in professional environments. Although manual debugging approaches can vary significantly depending on bug type (e.g. memory bugs or semantic bugs), these differences are not reflected in most existing fault localization tools. Little research has gone into automated identification of bug types to optimize the fault localization process. Further, existing fault localization techniques leverage on historical data only for augmentation of suspiciousness rankings. This thesis aims to provide a fault localization framework by combining data from various sources to help developers in the fault localization process. To achieve this, a bug classification schema is introduced, benchmarks are created, and a novel fault localization method based on historical data is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.