Abstract
A novel method to solve the rotating machinery fault diagnosis problem is proposed, which is based on principal components analysis (PCA) to extract the characteristic features and the Morlet kernel support vector machine (MSVM) to achieve the fault classification. Firstly, the gathered vibration signals were decomposed by the empirical mode decomposition (EMD) to obtain the corresponding intrinsic mode function (IMF). The EMD energy entropy that includes dominant fault information is defined as the characteristic features. However, the extracted features remained high-dimensional, and excessive redundant information still existed. So, the PCA is introduced to extract the characteristic features and reduce the dimension. The characteristic features are input into the MSVM to train and construct the running state identification model; the rotating machinery running state identification is realized. The running states of a bearing normal inner race and several inner races with different degree of fault were recognized; the results validate the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.