Abstract

Fault diagnosis of rolling bearings is still a very important and difficult research task on engineering. After analyzing the shortcomings of current bearing fault diagnosis technologies, a new approach based on Empirical Mode Decomposition (EMD) and blind equalization eigenvector algorithm (EVA) for rolling bearings fault diagnosis is proposed. In this approach, the characteristic high-frequency signal with amplitude and channel modulation of a rolling bearing with local damage is first separated from the mechanical vibration signal as an Intrinsic Mode Function (IMF) by using EMD, then the source impact vibration signal yielded by local damage is extracted by means of a EVA model and algorithm. Finally, the presented approach is used to analyze an impacting experiment and two real signals collected from rolling bearings with outer race damage or inner race damage. The results show that the EMD and EVA based approach can effectively detect rolling bearing fault.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call