Abstract
An accurate autoregressive (AR) model can reflect the characteristics of a dynamic system based on which the fault feature of gear vibration signal can be extracted without constructing mathematical model and studying the fault mechanism of gear vibration system, which are experienced by the time-frequency analysis methods. However, AR model can only be applied to stationary signals, while the gear fault vibration signals usually present nonstationary characteristics. Therefore, empirical mode decomposition (EMD), which can decompose the vibration signal into a finite number of intrinsic mode functions (IMFs), is introduced into feature extraction of gear vibration signals as a preprocessor before AR models are generated. On the other hand, by targeting the difficulties of obtaining sufficient fault samples in practice, support vector machine (SVM) is introduced into gear fault pattern recognition. In the proposed method in this paper, firstly, vibration signals are decomposed into a finite number of intrinsic mode functions, then the AR model of each IMF component is established; finally, the corresponding autoregressive parameters and the variance of remnant are regarded as the fault characteristic vectors and used as input parameters of SVM classifier to classify the working condition of gears. The experimental analysis results show that the proposed approach, in which IMF AR model and SVM are combined, can identify working condition of gears with a success rate of 100% even in the case of smaller number of samples.
Highlights
The process of gear fault diagnosis includes the acquisition of information, extracting feature, and recognizing conditions, in which the last two are the prior.Signal processing methods have been widely used to extract fault feature of gear vibration signals [1, 2]
The mathematical model needs to be established or the fault mechanism of the gear vibration system needs to be studied before the feature extraction in abovementioned methods, which usually are quite difficult to be fulfilled in practice
AR model is an information container that contains the characteristics of gear vibration systems, based on which the fault feature of gear vibration signal can be extracted
Summary
The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China. Empirical mode decomposition (EMD), which can decompose the vibration signal into a finite number of intrinsic mode functions (IMFs), is introduced into feature extraction of gear vibration signals as a preprocessor before AR models are generated. In the proposed method in this paper, firstly, vibration signals are decomposed into a finite number of intrinsic mode functions, the AR model of each IMF component is established; the corresponding autoregressive parameters and the variance of remnant are regarded as the fault characteristic vectors and used as input parameters of SVM classifier to classify the working condition of gears. The experimental analysis results show that the proposed approach, in which IMF AR model and SVM are combined, can identify working condition of gears with a success rate of 100% even in the case of smaller number of samples
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.