Abstract

The hypotheses on potential sources of error in an application can be specified in a fault model, which is useful for testing and for fault detection mechanisms. Based on a fault model, we developed custom mechanisms for providing self-recovery behavior in a component platform when third-party components behave inappropriately. In order to perform the tests for validating such mechanisms, it would be necessary to use a technique for fault injection so we could simulate faulty behavior. However such a technique may not be appropriate for a component-based approach. The behavior of systems tested with faults injected in the interface level (e.g., passing invalid parameters) would not represent actual application usage, thus significantly differing from cases where faults are injected in the component level (e.g. emulation of internal component errors). This paper presents our approach for testing, involving a general model for fault deployment and activation. Faulty components deployed at runtime represent faulty behaviors from the fault model. These faults are remotely activated through test probes that help testing the effectiveness of the platform's self-adaptive mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.