Abstract

The present work develops a comprehensive probabilistic seismic hazard study for Lebanon, a country prone to a high seismic hazard since it is located along the Levant fault system. The historical seismicity has documented devastating earthquakes which have struck this area. Contrarily, the instrumental period is typical of a low-to-moderate seismicity region. The source model built is made of a smoothed seismicity earthquake forecast based on the Lebanese instrumental catalog, combined with a fault model including major and best-characterized faults in the area. Earthquake frequencies on faults are inferred from geological as well as geodetic slip rates. Uncertainties at every step are tracked and a sensitivity study is led to identify which parameters and decisions most influence hazard estimates. The results demonstrate that the choice of the recurrence model, exponential or characteristic, impacts the most the hazard, followed by the uncertainty on the slip rate, on the maximum magnitude that may break faults, and on the minimum magnitude applied to faults. At return periods larger than or equal to 475 years, the hazard in Lebanon is fully controlled by the sources on faults, and the off-fault model has a negligible contribution. We establish a source model logic tree populated with the key parameters, and combine this logic tree with three ground-motion models (GMMs) potentially adapted to the Levant region. A specific study is led in Beirut, located on the hanging-wall of the Mount Lebanon fault to understand where the contributions come from in terms of magnitudes, distances and sources. Running hazard calculations based on the logic tree, distributions of hazard estimates are obtained for selected sites, as well as seismic hazard maps at the scale of the country. Considering the PGA at 475 years of return period, mean hazard values found are larger than 0.3 g for sites within a distance of 20–30 km from the main strand of the Levant Fault, as well as in the coastal region in-between Saida and Tripoli (≥ 0.4 g considering the 84th percentile). The study provides detailed information on the hazard levels to expect in Lebanon, with the associated uncertainties, constituting a solid basis that may help taking decisions in the perspective of future updates of the Lebanese building code.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.