Abstract

The main objective of this paper is to present a delamination benchmark test concept for composite materials that develop non-self-similar delamination in characterization specimens. The non-self-similar delamination is induced by rotating the loading blocks. The simplicity of the test allows for analyzing the loading mode history by concatenating different loading conditions, such as static and fatigue loading, under multiple loading modes. The methodology introduced in this paper can be particularized for any given composite material set and any sequence of loading conditions. To demonstrate the capabilities of the benchmark test, a case study is presented using AS4D/PEKK-FC thermoplastic composite material, which exhibits strong R-curve behavior. A sequence of opening and shear failure modes was applied under static and fatigue loading, providing an experimental data set that is ready to be used as a part of the validation of numerical predictive delamination models. The delamination process was monitored by X-ray radiography, and the final fracture surfaces were analyzed with scanning electron microscopy (SEM), giving a physical insight into the contribution of the fracture mechanisms to the delamination process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.