Abstract

Since many factors affect the fatigue life of welded structures and the relationships between them are complex, finding effective ways to improve the fatigue reliability of welded structures has always been a challenge for the industry. A fatigue reliability assessment model and design method for welded structures based on the structural stress method is proposed. According to the limit state equation of the model, the design-life fatigue reliability and the service fatigue reliability assessment approaches are presented. Then, a first-order second-moment method is employed to reveal quantitative fatigue reliability for welded joints and structures. The relationships between the fatigue reliability and the influence variables are used to analyze and improve the welded structure design. Fatigue reliability of T-joint examples was assessed by accounting for weld leg sizes, plate thicknesses, penetration depths, and single-sided and double-sided forms. Furthermore, the assessment model was verified with a welded bogie frame. The fatigue reliability of the frame was improved based on the evaluation results. The model and method can be applied to other types of welded joints and welded structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call