Abstract
Based on a monoblock concept (e.g. a tube-in-tile concept), each elementary tungsten plasma facing component (called Plasma-Facing Unit PFU) of the WEST lower divertor follows as closely as possible the same monoblock geometry, materials and bonding technology that is envisaged for ITER. A fatigue simulation of W PFU was used to validate its specific integration into WEST. The complex design, the material heterogeneities and the usage outside operational load design envelope are all possible causes of fatigue failure. This paper shows how the ITER like monoblocks and its U-shaped attachments technology are integrated into the WEST divertor by performing finite element analysis. The WEST lower divertor is designed to withstand 15MW steady-state of injected power, with peaked heat fluxes up to 20MW/m2. The integration and the design choices of a WEST ITER Like Plasma Facing Unit inside the WEST vacuum chamber is valid for an “expected life time” of repeated inter ELMs thermal steady state (>10s) cycles and for 300 off-normal vertical displacement events.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.