Abstract

The mechanical properties of composite materials degrade progressively with the increasing of the number of cyclic loadings. Based on the stiffness degradation rule of composites, a phenomenological fatigue damage model is presented in this paper, which contains two material parameters. They are proportional to the fatigue life of materials and inversely proportional to the fatigue loading level. Thirteen sets of experimental data of composite stiffness degradation were employed to verify the presented model, and the statistical results showed that this model is capable of describing the damage evolution of composite materials. The characteristics of damage development and accumulation of composite materials subjected to variable loading were studied in this paper. Four sets of two-level loading experimental data were cited to verify the damage model, and the results showed that the predicted life is in good agreement with the experimental ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.