Abstract

AbstractRotor components of an aircraft engine in service are usually subjected to combined high and low cycle fatigue (CCF) loadings. In this work, combining with the load spectrum of CCF, a modified damage accumulation model for CCF life prediction of turbine blades is first put forward to take into account the effects of load consequence and load interaction caused by high‐cycle fatigue (HCF) loads and low‐cycle fatigue (LCF) loads under CCF loading conditions. The predicted results demonstrate that the proposed model presents a higher prediction accuracy than Miner, Manson‐Halford model does. Moreover, to evaluate the fatigue reliability of rotor components, reliability model with the failure mode of CCF is proposed on the basis of the stress‐strength interference method when considering the strength degeneration, and its results show that the reliability model with CCF is more suitable for aero‐engine components than that with the failure mode of single fatigue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.