Abstract

ABSTRACTFatigue and fracture assessment of structures weakened by multiple site damage, such as two or more interacting cracks, represents a very challenging problem. A proper analysis of this problem often requires advanced modelling approaches. The objective of this paper is to develop a general theoretical approach and investigate the fatigue behaviour of two interacting cracks. The developed approach is based on the classical strip yield model and plasticity induced crack closure concept. It also utilises the 3D fundamental solution for an edge dislocation. The crack advance scheme adopts the cycle‐by‐cycle calculations of the effective stress intensity factors and crack increments. The modelling results were validated against experimental data available in the literature. Further, the nonlinear effects of the crack interaction and plate thickness on the crack opening stresses and crack growth rates were studied with the new approach for the problem geometry. It was demonstrated that the both effects could have a significant influence on fatigue life and cannot be disregarded in life and integrity assessments of structural components with multiple site damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call