Abstract

In this letter, we use squared iterative method with parameter checking to accelerate the convergence rate of expectation/conditional maximization (ECM) algorithm when estimating the channel parameters blindly in flat fading non-Gaussian channels, and further, we proposed automatic modulation classification (AMC) in flat fading non-Gaussian channels based on the proposed maximum likelihood estimator. The numerical results show that the proposed method can accelerate the convergence rate of ECM algorithm, and AMC based on the proposed method is faster than that based on ECM, while the accuracy of the former shows nearly no loss compared with that of the latter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.