Abstract

Given a directed graph G=(V,A), the Directed Maximum Leaf Spanning Tree problem asks to compute a directed spanning tree with as many leaves as possible. By designing a branching algorithm analyzed with Measure&Conquer, we show that the problem can be solved in time ${\mathcal{O}}^*({1.9044}^n)$ using polynomial space. Allowing exponential space, this run time upper bound can be lowered to ${\mathcal{O}}^*(1.8139^n)$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.