Abstract

A consensus tree is a phylogenetic tree that captures the similarity between a set of conflicting phylogenetic trees. The problem of computing a consensus tree is a major step in phylogenetic tree reconstruction. It is also central for predicting a species tree from a set of gene trees, as indicated recently in [Nature 2013]. This paper focuses on two of the most well-known and widely used consensus tree methods: the greedy consensus tree and the frequency difference consensus tree. Given k conflicting trees each with n leaves, the previous fastest algorithms for these problems were O(k n^2) for the greedy consensus tree [J. ACM 2016] and O~(min{k n^2, k^2n}) for the frequency difference consensus tree [ACM TCBB 2016]. We improve these running times to O~(k n^{1.5}) and O~(k n) respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call