Abstract
In this paper, we propose a fast winner-take-all (WTA) neural network. The fast winner-take-all neural network with the dynamic ratio in mutual-inhibition is developed from the general mean-based neural network (GEMNET), which adopts the mean of the active neurons as the threshold of mutual inhibition. Furthermore, the other winner-take-all neural network enhances the convergence speed to become a decimal system. The proposed WTA neural networks statistically achieve the large ratio of mutual inhibition. The new WTA Neural Networks converge faster than the existing WTA neural networks for a large number of competitors based on both theoretical analyses and simulation results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.