Abstract
Solving the thin-wire electric field integral equation (EFIE) by the multiresolution wavelet expansion method involves a time-consuming double numerical integration for each nonzero element of the moment matrix which in turn can outweigh the advantages of achieving a sparse matrix. To speed up the matrix fill process in wavelet-based moment method codes, first, the triangular scaling functions of a nonorthogonal piecewise liner wavelet at the finest spatial resolution are appropriately replaced by sinusoidal dipoles for which mutual impedances are available in closed-form analytical expressions. The fast wavelet bases transform is then exploited to effectively transfer the resultant matrix equation to multiresolution wavelet domain. Numerical results obtained by the compactly supported semi-orthogonal linear B-spline wavelet demonstrate dramatic reduction of the overall solution time without any degradation in the accuracy of the final solution
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.