Abstract

A stable volume integral equation (VIE) solver based on polarization/magnetization currents is presented, for the accurate and efficient computation of the electromagnetic (EM) scattering from highly inhomogeneous and high contrast objects. We employ the Galerkin method of moments to discretize the formulation with discontinuous piecewise linear basis functions on uniform voxelized grids, allowing for the acceleration of the associated matrix-vector products in an iterative solver, with the help of FFT. Numerical results illustrate the superior accuracy and more stable convergence properties of the proposed framework, when compared against standard low-order (piecewise constant) discretization schemes and a more conventional VIE formulation based on electric flux densities. Finally, the developed solver is applied to analyze complex geometries, including realistic human body models, typically used in modeling the interactions between EM waves and biological tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call