Abstract

The minimum connected dominating set (MCDS) problem consists of selecting a minimum set of vertices from an undirected graph, such that each vertex not in this set is adjacent to at least one of the vertices in it, and the subgraph induced by this vertex set is connected. This paper presents a fast vertex weighting (FVW) algorithm for solving the MCDS problem, which integrates several distinguishing features, such as a vertex weighting-based local search with tabu and perturbation strategies to help the search to jump out of the local optima, as well as a search space reduction strategy to improve the search efficiency. Computational experiments on four sets of 112 commonly used public benchmark instances, as well as 15 newly introduced sparse instances, show that FVW is highly competitive compared with the state-of-the-art algorithms in the literature despite its simplicity. FVW improves the previous best-known results for 20 large public benchmark instances while matching the best-known results for all but 2 of the remaining ones. Several ingredients of FVW are investigated to demonstrate the importance of the proposed ideas and techniques.Summary of Contribution: As a challenging classical NP-hard problem, the minimum connected dominating set (MCDS) problem has been studied for decades in the areas of both operations research and computer science, although there does not exist an exact polynomial algorithm for solving it. Thus, the new breakthrough on this classical NP-hard problem in terms of the computational results on classical benchmark instances is significant. This paper presents a new fast vertex weighting local search for solving the MCDS problem. Computational experiments on four sets of 112 commonly used public benchmark instances show that fast vertex weighting (FVW) is able to improve the previous best-known results for 20 large instances while matching the best-known results for all but 2 of the remaining instances. Several ingredients of FVW are also investigated to demonstrate the importance of the proposed ideas and techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call