Abstract
In this paper, we present an improved two-level heuristic to solve the clustered vehicle routing problem (CluVRP). The CluVRP is a generalization of the classical capacitated vehicle routing problem (CVRP) in which customers are grouped into predefined clusters, and all customers in a cluster must be served consecutively by the same vehicle. This paper contributes to the literature in the following ways: (i) new upper bounds are presented for multiple benchmark instances, (ii) good heuristic solutions are provided in much smaller computing times than existing approaches, (iii) the CluVRP is reduced to its cluster level without assuming Euclidean coordinates or distances, and (iv) a new variant of the CluVRP, the CluVRPwith weak cluster constraints, is introduced. In this variant, clusters are allocated to vehicles in their entirety, but all corresponding customers can be visited by the vehicle in any order.The proposed heuristic solves the CluVRP by combining two variable neighborhood search algorithms, that explore the solution space at the cluster level and the individual customer level respectively. The algorithm is tested on different benchmark instances from the literature with up to 484 nodes, obtaining high quality solutions while requiring only a limited calculation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.