Abstract

A fast support vector machine (SVM) training algorithm is proposed under the decomposition framework of SVM's algorithm by effectively integrating kernel caching, digest and shrinking policies and stopping conditions. Extensive experiments on MNIST handwritten digit database have been conducted to show that the proposed algorithm is much faster than Keerthi et al.'s improved SMO, about 9 times. Combined with principal component analysis, the total training for ten one against the-rest classifiers on MNIST took just 0.77 hours. The promising scalability of the proposed scheme can make it possible to apply SVM to a wide variety of problems in engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.