Abstract

The algebraic multigrid (AMG) method is an efficient solver for linear systems arising in finite element analyses. The AMG method is applicable at a matrix level, different from the geometric multigrid solvers. This paper proposes a combination of the parallel processing technique and the AMG method as a fast solver for electromagnetic field analyses. While the AMG method consists of a setup phase and a solution phase, parallel processing of the former phase is difficult. We present the use of long-range interpolation instead of the conventional direct interpolation for improvement of the parallel efficiency of the AMG setup phase. A magnetostatic analysis and an eddy-current analysis show the solver performance. The numerical results show that parallelized AMG is a fast solver and has sufficient scalability, as compared with the conventional solver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call