Abstract

Fast and high-order accurate algorithms for three-dimensional elastic scattering are of great importance when modeling physical phenomena in mechanics, seismic imaging, and many other fields of applied science. In this paper, we develop a novel boundary integral formulation for the three-dimensional elastic scattering based on the Helmholtz decomposition of elastic fields, which converts the Navier equation to a coupled system consisted of Helmholtz and Maxwell equations. An FFT-accelerated separation of variables solver is proposed to efficiently invert boundary integral formulations of the coupled system for elastic scattering from axisymmetric rigid bodies. In particular, by combining the regularization properties of the singular boundary integral operators and the FFT-based fast evaluation of modal Green’s functions, our numerical solver can rapidly solve the resulting integral equations with a high-order accuracy. Several numerical examples are provided to demonstrate the efficiency and accuracy of the proposed algorithm, including geometries with corners at different wavenumbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.