Abstract

To achieve high Strapdown Inertial Navigation System (SINS) alignment accuracy within a short period of time is still a challenging issue for underwater vehicles. In this paper, a new SINS initial alignment scheme aided by the velocity derived from Doppler Velocity Log (DVL) is proposed to solve this problem. In the stage of the coarse alignment, the velocity of DVL is employed to reduce the impact of the linear motion. With a backtracking framework, the fine alignment runs with the data recorded during the process of the coarse alignment and thus will speed up the overall alignment process. In addition, by using this new scheme, it is equivalent to length the alignment time for both coarse and fine alignments, so the accuracy of the alignments will be improved. In order to reduce the volume of the data that has to be recorded, a new model for SINS fine alignment is derived in the inertial reference frame which makes it feasible for real time applications. The experimental results are presented for both unaided static and in-motion alignment using DVL aiding. It is clearly shown that the proposed method meets the requirement of SINS alignment for underwater vehicles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.