Abstract

The capability of a simple kinematic-storage model (KSM) is analysed to be used as a tool for a Decision Support System for the evaluation of probability inundation maps in near real time in poorly gauged areas. KSM simulates the floodplain as a storage and assumes no exchange of momentum with the channel. For the in-bank flow, the storage is modified through a coefficient for taking the variations of channel cross sections into account. The generalized likelihood uncertainty estimation approach is used for addressing the probability flood maps along with their associated uncertainties. The model is tested on two river reaches along the Tiber River in Central Italy where observed inundation maps are available for two recent flood events. Despite the inherent uncertainties present in the input data and in the model structure, the results show that the model reproduces reasonably well, in terms of both precision and accuracy, the observed inundated areas. Tests were performed at different digital elevation model resolutions, showing a small effect of the geometry on the maximum performance obtained. The very low computational times, the parsimony of the model and its low sensitivity to the quality of the geometry representation of the channel and the floodplain makes KSM very appealing for flood forecasting and early warning system applications in poorly gauged and inaccessible areas. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.