Abstract

One of the most serious problems in vector quantization is the high computational complexity at the encoding phase. This paper presents a new fast search algorithm for vector quantization based on Extended Associative Memories (FSA-EAM). In order to obtain the FSA-EAM, first, we used the Extended Associative Memories (EAM) to create an EAM-codebook applying the EAM training stage to the codebook produced by the LBG algorithm. The result of this stage is an associative network whose goal is to establish a relation between training set and the codebook generated by the LBG algorithm. This associative network is EAM-codebook which is used by the FSA-EAM. The FSA-EAM VQ process is performed using the recalling stage of EAM. This process generates a set of the class indices to which each input vector belongs. With respect to the LBG algorithm, the main advantage offered by the proposed algorithm is high processing speed and low demand of resources (system memory), while the encoding quality remains competitive.Keywordsvector quantizationassociative memoriesimage codingfast search

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.