Abstract

The design and performance of a fast-scanning, low- and variable-temperature, scanning tunneling microscope (STM) incorporated in an ultrahigh vacuum system is described. The sample temperature can be varied from 25 to 350 K by cooling the sample using a continuous flow He cryostat and counter heating by a W filament. The sample temperature can be changed tens of degrees on a time scale of minutes, and scanning is possible within minutes after a temperature change. By means of a software implemented active drift compensation the drift rate can be as low as 1 nm/day. The STM is rigid, very compact, and of low weight, and is attached firmly to the sample holder using a bayonet-type socket. Atomic resolution on clean metal surfaces can be achieved in the entire temperature range. The performance of the instrument is further demonstrated by images of adsorbed hexa-tert-butyl-decacyclene molecules on Cu(110), by STM movies, i.e., sequential STM images with a time resolution down to 1 s/image (100×100 Å2 with 256×256 pixels), of the mobility of these molecules, and finally by constant current images of standing waves in the electronic local density of states on Cu(110).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.