Abstract
Collagen is the most abundant protein in mammals; it exhibits a hierarchical organization and provides structural support to a wide range of soft tissues, including blood vessels. The architecture of collagen fibrils dictates vascular stiffness and strength, and changes therein can contribute to disease progression. While transmission electron microscopy (TEM) is routinely used to examine collagen fibrils under normal and pathological conditions, computational tools that enable fast and minimally subjective quantitative assessment remain lacking. In the present study, we describe a novel semi-automated image processing and statistical modeling pipeline for segmenting individual collagen fibrils from TEM images and quantifying key metrics of interest, including fibril cross-sectional area and aspect ratio. For validation, we show first-of-their-kind illustrative results for adventitial collagen in the thoracic aorta from three different mouse models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Microscopy and microanalysis : the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.