Abstract
With the increasing scale of the power system, the increasing penetration of renewable energy, and the increasing uncertainty factors, traditional reliability evaluation methods based on Monte Carlo simulation have greatly reduced computational efficiency in complex power systems and cannot meet the requirements of real-time and rapid evaluation. This article proposes a hybrid data-driven strategy to achieve a rapid assessment of power grid reliability on two levels: offline training and online evaluation. Firstly, this article derives explicit analytical expressions for reliability indicators and component parameters, avoiding the computational burden of repetitive Monte Carlo simulation. Next, a large number of samples are quickly generated by parsing expressions to train convolutional neural networks (CNNs), and the system reliability index is quickly calculated under changing operating conditions through CNNs. Finally, the effectiveness and feasibility of the proposed method are verified through an improved RTS-79 testing system. The calculation results show that the method proposed in this article can achieve an online solution of second-level reliability indicators while ensuring calculation accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.