Abstract
We propose a fast iterative image reconstruction algorithm for normal, short-scan, and super-short-scan fan-beam computed tomography (CT), which aims at iterative reconstruction for low-dose and few-view CT by minimizing a data-fidelity term regularized with a total variation (TV) penalty. The derivation of the algorithm can be outlined as follows. First, the original minimization problem is formulated into a saddle-point (primal-dual) problem by using the Lagrangian duality, to which we apply the alternating projection proximal (APP) algorithm, which belongs to a class of first-order primal-dual methods. Second, we precondition the iterative formula using the modified ramp filter of the filtered back-projection (FBP) reconstruction algorithm in such a way that the solution to this preconditioned iteration perfectly coincides with the solution to the original problem. The resulting algorithm converges quickly to the minimizer of the cost function. To demonstrate the advantages of our method, we perform reconstruction experiments using projection data from both numerical phantoms and real CT data. Both qualitative and quantitative results are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.