Abstract

Graph learning is one of the most important tasks in machine learning, statistics and signal processing. In this paper, we focus on the problem of learning the generalized graph Lapla-cian (GGL) and propose an efficient algorithm to solve it. We first fully exploit the sparsity structure hidden in the objective function by utilizing soft-thresholding technique to transform the GGL problem into an equivalent problem. Moreover, we propose a fast proximal point algorithm (PPA) to solve the transformed GGL problem and establish the linear convergence rate of our algorithm. Extensive numerical experiments on both synthetic data and real data demonstrate that the soft-thresholding technique accelerates our PPA method and PPA can outperform the current state-of-the-art method in terms of speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.