Abstract

With the growing scarcity of spectrum resources, wideband spectrum sensing is necessary to process a large volume of data at a high sampling rate. For some applications, only second-order statistics are required for spectrum estimation. In this case, a fast power spectrum sensing solution is proposed based on the generalized coprime sampling. The solution involves the inherent structure of the sensing vector to reconstruct the autocorrelation sequence of inputs from sub-Nyquist samples, which requires only parallel Fourier transform and simple multiplication operations. Thus, it takes less time than the state-of-the-art methods while maintaining the same performance, and it achieves higher performance than the existing methods within the same execution time without the need to pre-estimate the number of inputs. Furthermore, the influence of the model mismatch has only a minor impact on the estimation performance, allowing for more efficient use of the spectrum resource in a distributed swarm scenario. Simulation results demonstrate the low complexity in sampling and computation, thus making it a more practical solution for real-time and distributed wideband spectrum sensing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.