Abstract

A fast constrained design optimization technique is introduced for the inverse design of high-speed links. The proposed method makes use of the support-vector-regression-based active subspace (SVR-AS) method to generate a lower dimensional space of active variables as a linear weighted combination of the higher dimensional design space to help simplify the optimization problem. This newly developed technique successfully transforms the complex nonlinear constraint optimization problem into a linear constraint minimization problem and provides a directly solvable function for the optimal results associated with each active variable. Furthermore, the proposed optimization algorithm can be utilized for the optimization problem with equality and inequality constraints, which contain one- and multidimensional active variables generated from the SVR-AS method. Studies of two high-speed links with channel design parameters for nonreturn-to-zero pulse and IBIS-AMI equalization settings for four-level pulse amplitude modulation, respectively, are utilized to verify the efficiency of the method. The sensitivity analysis ability of the SVR-AS method is also presented for both the one- and multidimensional active variable cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call