Abstract

Thermal residual stress and strain (TRSS) in particle reinforced metal matrix composites (PRMMCs) are believed to cause strengthening effects, according to previous studies. Here, the representative volume element (RVE) based computational homogenization technique was used to study the tensile deformation of PRMMCs with different particle aspect ratios (AR). The influence of TRSS was assessed quantitatively via comparing simulations with or without the cooling process. It was found that the strengthening effect of TRSS was affected by the particle AR. With the average strengthening effect of TRSS, a fast method of introducing the strengthening effect of TRSS to the tensile behavior of PRMMCs was developed. The new method has reduced the computational cost by a factor 2. The effect of TRSS on continuous fiber-reinforced metal matrix composite was found to have a softening-effect during the entire tensile deformation process because of the pre-yield effect caused by the cooling process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call