Abstract

This paper presents a fast method for the generation of non-Fickian particle paths within a particle-tracking pollutant diffusion model based on a Fourier spectral representation of fractional Brownian motion (fBm), a generalization of ordinary Brownian motion. Correlated diffusive components in a particle-tracking algorithm are modelled using fBm increments that have long-range correlations over numerous spatial and/or temporal scales; hence producing non-Fickian diffusion. A fast algorithm to generate fBm and its increment by using its power spectral density S(f) in a fast Fourier transform algorithm is given. A general equation for the scaling of fBm within a velocity flow field with simple linear shear is presented. An initial numerical study of the nature of fBm shear dispersion has been conducted by incorporating fBm increments into a non-Fickian particle-tracking algorithm. It is shown that the effect of simple (i.e. linear) shear on the diffusion process is to produce enhanced diffusive phenomena with the longitudinal spreading of the plume scaling with exponent ∼1+H, where H is the Hurst exponent used to describe fBm. Finally, a more complex shear zone at the entrance of a coastal bay model is investigated using both a traditional particle-tracking method and the fBm-based method. Copyright © 2000 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.